Would Sustainable Urban Transport really help reducing energy consumption and air pollution problems?

1st ATRANS Symposium on Transport Crisis in Thailand 1 August 2008

Source: Thanes and Wongharn (2006), Decomposition of Energy and CO₂ for Thailand, การประชุมสัมมนา e-nett, มทส., กค. 2548

atrans

Sustainable urban transport: The idea and principles

Space required for transport 60 people

CARS

BUS

BIKES

Inefficient Use of Energy

1,200 kg

How efficient it is to transport 1 person (weights 80 kg.) by a vehicle weighing over 1 tons.

TRANS

More efficient Use of Energy

BUS

18,000 kg

Weight: 18 tons Capacity: 95 persons **Bike**

Weight: 10-15 kgs

Air Pollution Problems

- Affect human respiratory problems
- Increase morbidity and mortality
- In European countries, vehicular traffic accounts for

urban

T Ratmosphere.

- - 100% of CO
- - 75% of NOx
- - 40% of PM

3th Winner Photo Competition CAP- Swisscontact 2002 "Don't Distrub My Breathing"

Air Pollution Problems

- **China** "Air pollution kills 400,000" annual. (2005)
- **Tehran** All schools and nurseries in Tehran closed 2 days in December 2005 due to smog. (2005)
- Bangkok PM₁₀ claimed
 4,000 to 5,500 premature
 deaths in Bangkok each year
 (1993).

TRANS

Image source: WRI

Global Climate Change

- Large amount of pollutants was produced into atmosphere, causing excessive heat retention effect
 - Rise in Temperature
 - Shifting rainfall patterns, ocean currents
 - More frequency and intensity of extreme weathers
 - Rise in sea level (100 years -> 1 meters rise)

Photo: wikipedia.org, globalcrisis.com

Current Bangkok Situations

Trends of Future Vehicle Usage

Source: IEA/SMP 2004

Oil Consumption and CO2 Emission Reduction

Promising Strategies

- Improving Fuel Economy
 - Lighter material, more efficient components, advanced engine, etc

Improving on-road efficiency

- Vehicle inspection/maintenance, Speed limit policy, vehicle retirement program
- Promoting Alternative Fuels
 - Biofuels, Hydrogen, LPG, CNG, Ethanol, Methanol
- Travel demand management

Sustainable Transport

 Ways of reducing vehicular traffic demand, while people can still meet their travel goal.

 focus on people travel rather than vehicular travel.

The push and pull approach

Measures with push-effects Area-wide parking management, parking space restrictions in zoning ordinances, car limited zones, permanent or time-of-day car bans, congestion management, speed reductions, road pricing...

Measures with pull-effects

Priority for buses and trams, high service frequency, passenger friendly stops and surroundings, more comfort, park-and-ride, bike-and-ride..., area-wide cycle-networks, attractive pedestrian connections...

Measures with push- and pull-effects

Redistribution of carriageway space to provide cycle lanes, broader sidewalks, planting strips, bus lanes..., redistribution of time-cycles at traffic lights in favour of public transport and non-motorized modes, public-awareness-concepts, citizens' participation and marketing, enforcement and penalizing...

Source: Müller, P., Schleicher-Jester, F., Schmidt, M.-P. & Topp, H.H. (1992): Konzepte flächenhafter Verkehrsberuhigung in 16 Städten", Grüne Reihe des Fachgebiets Verkehrswesen der Universität Kaiserslautern No. 24.

ATRANS